

WG2 Summary

Conveners: R. Ball, M. Sakuda, S. Zeller

NuFact05 Workshop

June 25, 2005

Neutrino Scattering Physics

- 1. Experimental Results (Zeller)
 - achievements & plans
- 2. Theoretical Results (Sakuda)
 - achievements & plans

Where We Are Headed

Past Measurements

(bubble chamber exps)

Low E_v

- low statistics - 1st σ_v measurements - 70's, 80's

√ factory?

superbeams? p driver?

β beams?

SNS IAr?

Future Dedicated σ_ν Experiments

Low E_v

fine-grained detectorsMINERvA

DIS

High E_v

high statisticsprobe nucleon structure80's, 90's

Present Day
v Oscillation Exps

Low E,

- more intense ν beams

- new v data

(higher stats, quality than existing data)

- revisit σ_ν measurements MiniBooNE, K2K

Low Energy Neutrino Scattering

Why Low Energy σ_ν Measurements are Important

- imperative for future osc exps: need to precisely predict both signal & background rates
 - QE necessary to accurately predict signal rates in osc exps
 - need to know NC π^0 backgrounds for $\nu_{\mu} \rightarrow \nu_{e}$
 - need to know CC π⁺ backgrounds for v_μ disappearance
 - v cross sections for CP violation searches
- interesting in their own right
- combination has increased effort towards obtaining more precise low energy σ, measurements ...

WG2 v Scattering: Status of Current Measurements

- electron scattering at JLAB (A. Bodek)
- K2K (L. Ludovici, M. Sakuda, F. Sanchez)
- MiniBooNE (I. Stancu, J. Monroe, M. Wascko)

in all cases new results shown here at NuFact!

- MINOS (A. Marchionni)
 - v beam commissioned in Jan 2005
 - first beam events in near/far detectors
 - look forward to future v scattering results from MINOS near detector

New Electron Data from JLAB

JUPITER e-A (A. Bodek)

- v osc exps use nuclear targets (need accurate nuclear models; rely on higher statistics e-A measurements)
- collaborative program linking
 e and v communities
- took data in January 2005
 (1st look at this very preliminary data here at NuFact!)
- dedicated low Q² electron meas for v community

- goal: fast track 5% σ measurements (supply an important cross-check of σ_v models)

Results From K2K

 new results on coherent charged pion production (F. Sanchez)

M_A from QE event sample (M. Sakuda)

K2K Coherent π Production

 "search for coherent charged pion production in neutrino-carbon interactions" (hep-ex/0506008, submitted to PRL)

- neutrino coherently scatters off nucleus
 - negligible E transferred to target
 - distinct: low Q^2 , very forward π (compared to resonantly prod π 's)
- model predictions for this process vary widely (x 10)

New K2K Coherent π⁺ Results

(F. Sanchez)

- select an enriched coherent π sample
 by selecting events
 w/ low vertex activity
 (expect small nuclear recoil)
- low Q² is region where expect coherent π production
- report no evidence for coherent π production from K2K data

New K2K Coherent π⁺ Results

(F. Sanchez)

- based on this, set a limit (1.3 GeV, coherent is < 0.6% of v_{μ} CC σ)
- this is the 1st coherent π prod measurement below 2 GeV;
 much interest & lively discussion in WG2
- will be interesting to compare to anticipated meas from MiniBooNE

K2K M_A from QE ν_{μ} n $\rightarrow \mu^{\dagger}$ p

 extract axial vector mass, M_A, from QE data in SciFi detector (fundamental parameter in predicting shape, norm of QE σ)

(M. Sakuda)

- effect on M_A from:
 - updated vector FF
 - new coherent π
- K2K is 1st meas
 of M_A on H₂O target
- part of important
 effort aimed at
 improving knowledge
 of M_A (and QE σ)
 on nuclear targets

New Results From MiniBooNE

 new CC scattering results from MiniBooNE experiment (J. Monroe, M. Wascko)

- Cerenkov detector
- high statistics samples of CC QE & CC 1π⁺ events

• high purity $v_{\mu} N \longrightarrow \mu^{-} N \pi^{+}$ (CC $1\pi^+$) sample can be selected w/ simple requirement that events have 2 decay (Michel) electrons

5x more CC 1π⁺ data than all previous exps combined

MiniBooNE CC π⁺/QE

- •1st look at ratio of CC 1πt/QE
 cross sections as function of E
 from MiniBooNE CC data
 - provide important input for σ_v simulations

(J. Monroe)

 can also multiply ratio by QE σ prediction to extract CC π⁺ cross section

first measurement at low E on nuclear target (CH₂)

(J. Monroe)

WG2 v Scattering: Future Initiatives

- MiniBooNE v running, SciBar (M. Wascko)
- MINERvA (J. Nelson)
- SNS (I. Stancu)
- β beams (C. Volpe)
- liquid Argon detection (B. Fleming, A. Meregaglia)

Future: MiniBooNE T Running

- antineutrino σ data less abundant
- especially need low E measurements (where there is currently no data)
 - → important for future $\stackrel{\frown}{CP}$ searches $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$
- MiniBooNE expects ~10k ν_μ QE
 in 1 year (after cuts), E_ν ~ 0.8 GeV
- developed several new techniques for measuring v contamination in v beam ("poor man's sign selection"; no B field)

(M. Wascko)

Future: Bringing K2K SciBar Detector to Booster v Beamline

window of opportunity to bring fine-grained K2K SciBar to BNB

(M. Wascko)

- proposal recently submitted to Fermilab
 - measurements to aid MiniBooNE (in its capacity as near detector)
 - v cross section measurements for T2K

Future: MINERvA Experiment

- add'l near detector in NuMI beam line
- high statistics neutrino samples at a variety of beam energies (16 x 10²⁰ POT in 4 years)

- fully active, fine grained detector
- multiple nuclear targets (C,Fe,Pb)

(J. Nelson)

Future: MINERvA Experiment

- impressive laundry list of neutrino scattering measurements that can be studied with unprecedented detail ... (J. Nelson)
- Axial form factor of the nucleon
 - > Yet to be accurately measured over a wide Q² range.
- Resonance production in both NC & CC neutrino interactions
 - > Statistically significant measurements with 1-5 GeV neutrinos *
 - > Study of "duality" with neutrinos
- Coherent pion production
 - > Statistically significant measurements of σ or A-dependence
- Nuclear effects
 - > Expect some significant differences for ν-A vs e/μ-A nuclear effects
- Strange Particle Production
 - > Important backgrounds for proton decay
- Parton distribution functions
 - > Measurement of high-x behavior of quarks
- Generalized parton distributions

- construction in late 2006
- commissioning end of 2008

Future: Even Lower Energy (SNS)

- also effort to extend v scattering activity down to even lower E's (5-50 MeV)
 - orders of magnitude lower than what we've been talking about

valuable for SN modeling and constraining nuclear models

- build 20 ton neutrino detector at SNS (~1000 evts/yr)
- DAR well known v spectra, separate v flavors w/ timing cuts
- submitting proposal to DOE end of this month (start mid 2009)

Future: β Beams

 complementary to SNS: possibility for low energy beta beams (10 -100 MeV)

(C. Volpe)

 effort to span important gap between reactor and accelerator-based neutrino-nucleus interactions (where very few existing measurements)

Future Detection: Liquid Argon

 potential for vast improvement in v scattering measurements using extremely high resolution IAr detectors ...

- more precise σ_ν measurements;
 superior final state particle ID,
 improvements in neutron detection,
 - + v mag moment (B. Fleming)

 detailed studies of embedding inner water target (T2K, to aid in relating O and Ar measurements)
 (A. Meregaglia)

WG2 Achievements: Exp'l Meas

- K2K and MiniBooNE filling in gap in our knowledge of low energy neutrino scattering (and cross sections)
 - saw several new results this week
 - a lot of firsts (measurements in regions where previously no data)
- precise measurement of these σ's, kinematic distributions will be an even more critical ingredient for future osc exps
- look forward further advancement w/ MINERvA in near future (and at even lower E's: SNS, β beams?)
- surveyed the landscape ... what's next after these exps?

WG2 Plans: What's Next? (questions for NuFact06)

- after K2K, MiniBooNE, MINERvA, what more will we need to know?
 - what other v scattering measurements can & should be made that won't be covered by this menu?
 - what add'l info will be needed by future v osc exps that we won't have in hand?
- 3 parts: beams, targets, detectors

J. Morfin plenary_____

WG2 Plans: What's Next? (questions for NuFact06)

neutrino beams:

- add'l v measurements? (post MiniBooNE)
- direct meas of (unosc) v_e σ's (>reactor E)? (SNS, β beam)
- add'l dedicated hadron production exps? (post HARP, MIPP) (for precise σ_v , need precise knowledge of beam itself, do we have enough info?)
- narrow band beams for detailed NC studies

neutrino targets:

- high stats light target measurements (H₂, D₂)
- polarized targets?

improved detector technology:

- next generation detectors? (IAr) + ??

Thank You!

- would like to thank all of the WG2 speakers & participants
- would like to extend a sincere thank you to V. Palladino & INFN for the very generous travel support which made it possible for several WG2 speakers/participants to attend this workshop

MiniBooNE CC π^+

(J. Monroe)